Wechseln zu: Navigation, Suche

Energiespeicher

Version vom 23. Januar 2014, 17:11 Uhr von Anni (Diskussion | Beiträge) (Möglichkeiten der Speicherung von Energie für die Elektromobilität)

Probleme der Energiespeicher für die Elektromobilität

Eines der größten Probleme der Elektromobilität ist es, geeignete Energiespeicher zu entwickeln. Auf dem Stand der Technik 2013 kann aufgrund des hohen Gewichts leistungsstarker Akkus nicht genug Energie im Fahrzeug mitgeführt werden, um lange Strecken zu überwinden. Entgegen der Erwartungen hat aber der gesamte Produktlebenszyklus eines Lithium-Ionen-Akkus eine geringe negative Auswirkung auf die Ökobilanz des Elektrofahrzeugs. Im Gegenteil dazu senkt der hohe Energieaufwand bei Herstellung und Speicherung von Wasserstoff für die Verwendung in Brennstoffzellen deren Ökobilanz drastisch. Unabhängig von der Technologie hat die Herkunft des Stroms eine ungleich höhere Auswirkung darauf, wie „grün“ Elektromobilität ist.

Möglichkeiten der Speicherung von Energie für die Elektromobilität

Heutzutage ist die gängigste Form Energie zu speichern der Akkumulator. Ein wichtiges Bewertungskriterium für Energiespeicher ist die spezifische Energiedichte in der Einheit Energie in Wattstunden pro kg Gewicht. Ist gibt verschiedene Möglichkeiten Energie chemisch in einem Akku zu speichern. In der Vergangenheit ist vor allem der Bleiakkumulator als Starter- und Bordnetzakku von Bedeutung gewesen, da er kostengünstig ist, ein gutes Tieftemperaturverhalten hat und kurzfristig sehr hohe Entladeströme abgeben kann [1]. Sein Nachteil besteht aber darin, eine sehr geringe spezifische Energiedichte von 30 Wh/kg zu besitzen. Er ist somit zu schwer für die Verwendung als Antriebsakku. Nach einer kurzen Phase der Verwendung von Nickel-Cadmium-Batterien, welche wegen ihrer Giftigkeit aus dem Wettbewerb ausschieden, und Nickel-Metallhybrid-Akkus, welche wegen des Memory-Effekts (Verminderung der nutzbaren Kapazität nach häufiger Teilentladung) nicht erfolgreich waren, zeichnet sich heute ab, dass der Lithium-Ionen-Akku die vielversprechendste Option ist [1]. Der Lithium-Ionen-Akku besteht aus mehreren Sekundärzellen (Entladung ist reversibel). In diesen wird die elektrische Energie durch die Verschiebung von Lithium-Ionen gespeichert. Die positive Elektrode besteht aus Übergangsmetalloxid (z. Bsp. CoO2), die negative Elektrode häufig aus Graphit mit eingelagerten Lithium-Ionen. Die Lithium-Ionen können in einer Zelle durch das nicht wässrigen Elektrolyt zwischen den Elektroden hin- und herwandern [2]. Um die gewünschte Kapazität zu erhalten, werden viele Zellen verschaltet. Unter Einbeziehung der Verluste durch Verschaltung, etc., ergibt sich eine immer noch relativ hohe Energiedichte von 140 Wh/kg. Leider ist auch hier durch physikalische Grenzen kein sprunghafter Anstieg der Energiedichte zu erwarten. Die Schwerpunkte in der Forschung liegen momentan auf der Verbesserung der Verschaltung der Einzelzellen, der Sicherheit während aller Betriebsbedingung und der Industrialisierung der Fertigung zur Kostensenkung [1]. Die Anforderungen variieren je nach Einsatzort. Beispielsweise legen Amerika und China größeren Wert auf Sicherheit in Crash-Situationen und kostengünstige Herstellung, Europa aber auf ein möglichst geringes Gewicht. Dies ist auch begründet durch die verschiedenen Ausrichtungen in der Elektromobilität, wie zum Beispiel die Verwendung von Hybrid- oder reinen Elektroautos [1]. Zwei Systeme, die eine höhere Energiedichte besitzen, befinden sich momentan im Forschungsstadium: die Lithium-Schwefel-Zellchemie (ca. doppelte Energiedichte einer Lithium-Ionen-Batterie) und die Lithium-Luft-Zellchemie (3-4 fache Energiedichte) [1]. Bei beiden Konzepten ist aber noch nicht sicher, ob sie überhaupt funktionieren werden.


Einzelnachweise

  1. [M. Lienkamp, Elektromobilität. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.]